Statistical Arbitrage by Pair Trading using
Clustering and Machine Learning.
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Trading Methodology: Clustering : Our approach to pairs trading is to apply PCA for dimension reduction on a
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t-SNE: Method to visualize clusters from high dimension to 2-D space. I el .
Gradient Boosting: A sequential ensemble model to capture complex patterns. ’[ NextFar ]‘ 8:88%
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Random Forest: A bagging decision tree to reduce bias.
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LSTM: Apply more weight to recent observations in time series prediction. Comparing 50%
with the standard RNN, LSTM diminishes the problems of long-term dependencies. o
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LSTM 0.56 0.53 0.61

Pair trading is still a feasible trading strategy and machine learning can improve its
performance.



