Stat 500 - Homework 2 (Solutions)

Part A.

- 1. We first remove observations associated with negative values of the variable experience:
- > library(faraway)
- > data(uswages)
- > newdata <- subset(uswages, uswages\$exper >= 0)

Now, we regress weekly wages onto years of education and experience. By default R always includes an intercept.

```
> fit <- lm(wage ~ educ + exper, data=newdata)
> summary(fit)
```

Call:

lm(formula = wage ~ educ + exper, data = newdata)

Residuals:

```
Min 1Q Median 3Q Max -1014.7 -235.2 -52.1 150.1 7249.2
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) -239.1146     50.7111   -4.715    2.58e-06 ***

educ     51.8654     3.3423    15.518     < 2e-16 ***

exper     9.3287     0.7602    12.271     < 2e-16 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 426.8 on 1964 degrees of freedom Multiple R-squared: 0.1348, Adjusted R-squared: 0.1339 F-statistic: 153 on 2 and 1964 DF, p-value: < 2.2e-16
```

- 2. Our linear model explains 13.48 % of the variation in the response. Note that only if the model contains an intercept R outputs the correct value of the coefficient of determination. This is because only with intercept the variance decomposition relation holds. What happens if you do not include the intercept?
- 3. The case number of the largest residual is 1550, the value of his residual is 7249.174.

4. The mean of the residuals is $-1.381535 \times 10^{-15} \approx 0$, while the median of the residuals is -52.14337. This suggests that the (empirical) distribution of the residuals is skewed to the right.

```
> mean(fit$res)
[1] -1.381535e-15
> median(fit$res)
[1] -52.14337
```

- 5. This is an exercise in how to interpret the estimated coefficients of a linear model. Possible answers are: "Based on the linear model we predict for two people with the same education and one year difference in experience a wage difference of \$9.33." Or: "Our linear model predicts that an increase of one year in experience results, ceteris paribus, in an increase of weekly wage by \$9.33."
- 6. The correlation between fitted values and residuals is $6.35678 \times 10^{-17} \approx 0$. In geometric terms this means that the vectors of fitted values and residuals are orthogonal to each other, i.e. the vectors $X'\hat{\beta}$ and $\hat{\epsilon} = Y X'\hat{\beta}$ from a right angle. Based on plot of residuals versus fitted values in Figure 1 do you think that the linear regression is a good model?

```
> cor(fit$fitted, fit$res)
[1] 6.35678e-17
> plot(fit$fitted, fit$res, xlab="Fitted", ylab="Residuals")
> abline(h=0) # add horizontal line at zero
```

Part B.

1. To compute $\hat{\beta} = (X'X)^{-1}XY$ we use the following code:

2. The population ("true") variance of $\hat{\beta}$ is $\sigma^2(X'X)^{-1}$, i.e.

3. An unbiased estimate for σ^2 is given by $\frac{1}{7}\sum_{i=1}^{10}(y_i-x_i'\hat{\beta})^2$, i.e.

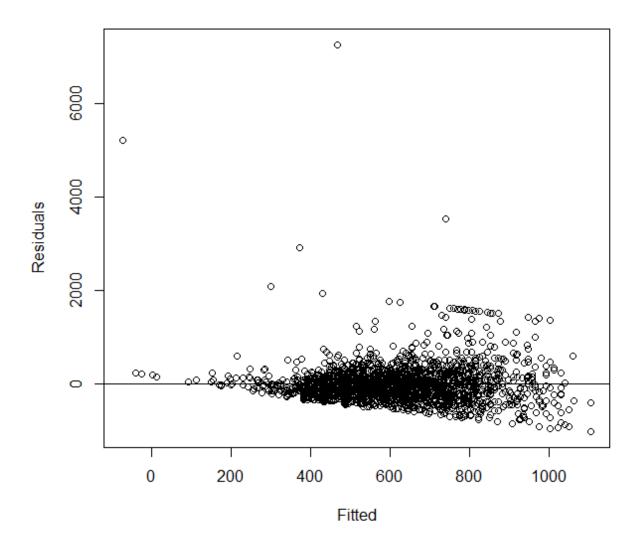


Figure 1: Residuals versus Fitted Values

```
> fitted <- y - X%*%beta
> sigma2_hat <- sum(fitted^2)/(length(fitted)-3)
> sigma2_hat
[1] 1.887114
```

4. & 5. We solve questions 4 and 5 together in one loop but comment separately on the results.

```
> B <- matrix(NA, ncol=3, nrow=1000)
> S <- matrix(NA, ncol=1, nrow=1000)
> for (i in 1:1000) {
+    y <- X%*%beta0 + rnorm(10, 0, sigma)</pre>
```

```
+ B[i,] <- solve(t(X)%*%X)%*%t(X)%*%y
+ fitted <- y - X%*%B[i,]
+ S[i] <- sum(fitted^2)/(length(fitted) -3)
+ }
> var(B[,1]) # variance of beta_1 etc...
[1] 0.1486725
> var(B[,2])
[1] 0.05159052
> var(B[,3])
[1] 0.0284923
```

From above output we learn that the estimates of the variances for $\hat{\beta}_1$, $\hat{\beta}_2$, and $\hat{\beta}_3$ match the population variances in question 2 quite well. Moreover, the histograms of the estimates are centered around the true values of β :

```
> hist(B[,1], main=expression(paste("Histogram of ", beta[1])), xlab=expression(hat(beta)[1]))
> hist(B[,2], main=expression(paste("Histogram of ", beta[2])), xlab=expression(hat(beta)[2]))
> hist(B[,3], main=expression(paste("Histogram of ", beta[3])), xlab=expression(hat(beta)[3]))
> hist(S, main=expression(paste("Histogram of ", hat(sigma))), xlab=expression(hat(sigma)))
```

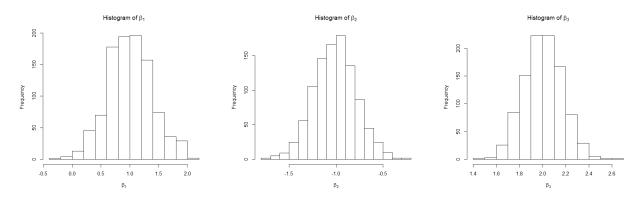


Figure 2: (a) Histogram of estimates for β_1 , (b) Histogram of estimates for β_2 , and (c) Histogram of estimates for β_3 . Each histogram is based on 1000 simulations.

5. The mean of the estimates for σ^2 is also quite accurate:

```
> mean(S)
[1] 0.9958682
```

We can also compare the histogram of the estimates for σ^2 with the histogram of samples from the population distribution of estimates for σ^2 :

```
> hist(S, main=expression(paste("Histogram of ", hat(sigma))), xlab=expression(hat(sigma)))
> chi2 <- rchisq(1000,7)
[1] 0.9982037
> hist(chi2/7, main="")
```

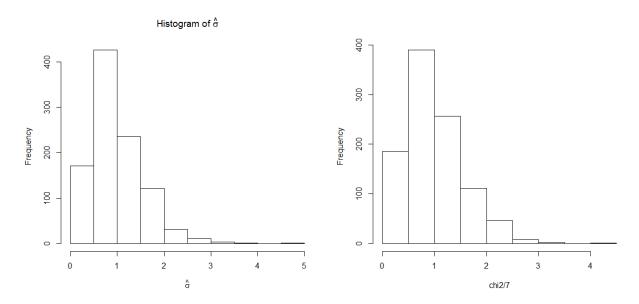


Figure 3: (a) Histogram of estimates for σ^2 , (b) Histogram of samples from the population distribution of the estimate for σ^2 imates for β_2 . Each histogram is based on 1000 simulations.

We see that the two histograms have the same centers of mass but that the histogram of the estimates for σ^2 is slightly more spread out.

7. We suggest to re-run the code with errors following the uniform distribution $U[-\sqrt{3}, \sqrt{3}]$. (Check for yourself that this distribution has indeed mean 0 and variance 1.)

```
> B <- matrix(NA, ncol=3, nrow=1000)
> S <- matrix(NA, ncol=1, nrow=1000)
> for (i in 1:1000) {
    y <- X%*%beta0 + runif(10, -sqrt(3), sqrt(3))</pre>
    B[i,] \leftarrow solve(t(X)%*%X)%*%t(X)%*%y
    fitted \leftarrow y - X%*%B[i,]
    S[i] \leftarrow sum(fitted^2)/(10-3)
+ }
>
> var(B[,1])
[1] 0.1296519
> var(B[,2])
[1] 0.04997595
> var(B[,3])
[1] 0.02816145
> hist(B[,1], main=expression(paste("Histogram of ", beta[1])), xlab=expression(hat(beta)[1]))
> hist(B[,2], main=expression(paste("Histogram of ", beta[2])), xlab=expression(hat(beta)[2]))
> hist(B[,3], main=expression(paste("Histogram of ", beta[3])), xlab=expression(hat(beta)[3]))
> hist(S, main=expression(paste("Histogram of ", hat(sigma))), xlab=expression(hat(sigma)))
> mean(S)
```

[1] 1.02071

We observe that neither the variances of the estimates of β nor the mean of the estimates of σ^2 are much affected by the change in the distribution of the error term. However, from Figure 4 we see that the variation of the estimates for β has increased (albeit only slightly). Notably, the histogram of the estimates of σ^2 looks now very different from the histogram based on the correct distribution depicted in Figure 3 (b) (note the change in the spread!).

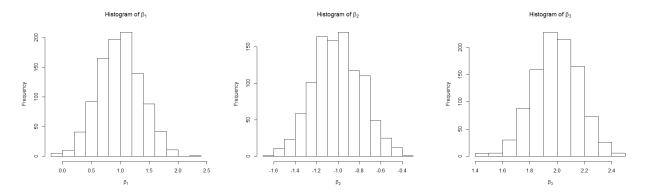


Figure 4: (a) Histogram of estimates for β_1 , (b) Histogram of estimates for β_2 , and (c) Histogram of estimates for β_3 . Error distribution is the uniform distribution $U[-\sqrt{3}, \sqrt{3}]$. Each histogram is based on 1000 simulations.

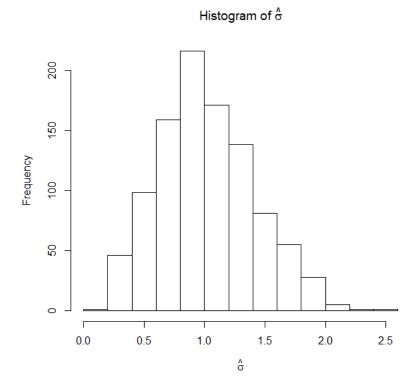


Figure 5: Residuals versus Fitted Values. Error distribution is the uniform distribution $U[-\sqrt{3}, \sqrt{3}]$. Histogram is based on 1000 simulations.