
Stat 500 - Homework 2 (Solutions)

Part A.
1. We first remove observations associated with negative values of the variable experience:

> library(faraway)

> data(uswages)

> newdata <- subset(uswages, uswages$exper >= 0)

Now, we regress weekly wages onto years of education and experience. By default R always
includes an intercept.

> fit <- lm(wage ~ educ + exper, data=newdata)

> summary(fit)

Call:

lm(formula = wage ~ educ + exper, data = newdata)

Residuals:

Min 1Q Median 3Q Max

-1014.7 -235.2 -52.1 150.1 7249.2

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -239.1146 50.7111 -4.715 2.58e-06 ***

educ 51.8654 3.3423 15.518 < 2e-16 ***

exper 9.3287 0.7602 12.271 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 426.8 on 1964 degrees of freedom

Multiple R-squared: 0.1348,Adjusted R-squared: 0.1339

F-statistic: 153 on 2 and 1964 DF, p-value: < 2.2e-16

2. Our linear model explains 13.48 % of the variation in the response. Note that only if the model
contains an intercept R outputs the correct value of the coefficient of determination. This is because
only with intercept the variance decomposition relation holds. What happens if you do not include
the intercept?

3. The case number of the largest residual is 1550, the value of his residual is 7249.174.

> which.max(fit$res) # case number (index)

15387

1550

> fit$res[which.max(fit$res)] # value of max. residual

15387

7249.174
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4. The mean of the residuals is −1.381535 × 10−15 ≈ 0, while the median of the residuals is
−52.14337. This suggests that the (empirical) distribution of the residuals is skewed to the right.

> mean(fit$res)

[1] -1.381535e-15

> median(fit$res)

[1] -52.14337

5. This is an exercise in how to interpret the estimated coefficients of a linear model. Possible
answers are: “Based on the linear model we predict for two people with the same education and one
year difference in experience a wage difference of $9.33.” Or: “Our linear model predicts that an
increase of one year in experience results, ceteris paribus, in an increase of weekly wage by $9.33.”

6. The correlation between fitted values and residuals is 6.35678× 10−17 ≈ 0. In geometric terms
this means that the vectors of fitted values and residuals are orthogonal to each other, i.e. the
vectors X ′β̂ and ε̂ = Y −X ′β̂ from a right angle. Based on plot of residuals versus fitted values in
Figure 1 do you think that the linear regression is a good model?

> cor(fit$fitted, fit$res)

[1] 6.35678e-17

> plot(fit$fitted, fit$res, xlab="Fitted", ylab="Residuals")

> abline(h=0) # add horizontal line at zero

Part B.
1. To compute β̂ = (X ′X)−1XY we use the following code:

> set.seed(1504) # initialize random number generator to get reproducible results

> X <- cbind(rep(1, 10),c(2,-1,3,3,2,1,0,0,-1,0), c(-2,-2,-2,3,3,3,0,0,0,1))

> beta0 <- c(1,-1,2)

> sigma <- 1

> y <- X%*%beta0 + rnorm(10, 0, sigma)

> solve(t(X)%*%X)%*%t(X)%*%y

[,1]

[1,] 1.0623948

[2,] -0.9453115

[3,] 2.2332188

2. The population (“true”) variance of β̂ is σ2(X ′X)−1, i.e.

> sigma^2*solve(t(X)%*%X)

[,1] [,2] [,3]

[1,] 0.139180672 -0.042016807 -0.003413866

[2,] -0.042016807 0.050420168 -0.008403361

[3,] -0.003413866 -0.008403361 0.027442227

3. An unbiased estimate for σ2 is given by 1
7

∑10
i=1(yi − x′iβ̂)2, i.e.
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Figure 1: Residuals versus Fitted Values

> fitted <- y - X%*%beta

> sigma2_hat <- sum(fitted^2)/(length(fitted)-3)

> sigma2_hat

[1] 1.887114

4. & 5. We solve questions 4 and 5 together in one loop but comment separately on the results.

> B <- matrix(NA, ncol=3, nrow=1000)

> S <- matrix(NA, ncol=1, nrow=1000)

> for (i in 1:1000) {

+ y <- X%*%beta0 + rnorm(10, 0, sigma)
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+ B[i,] <- solve(t(X)%*%X)%*%t(X)%*%y

+ fitted <- y - X%*%B[i,]

+ S[i] <- sum(fitted^2)/(length(fitted) -3)

+ }

> var(B[,1]) # variance of beta_1 etc...

[1] 0.1486725

> var(B[,2])

[1] 0.05159052

> var(B[,3])

[1] 0.0284923

From above output we learn that the estimates of the variances for β̂1, β̂2, and β̂3 match the
population variances in question 2 quite well. Moreover, the histograms of the estimates are centered
around the true values of β:

> hist(B[,1], main=expression(paste("Histogram of ", beta[1])), xlab=expression(hat(beta)[1]))

> hist(B[,2], main=expression(paste("Histogram of ", beta[2])), xlab=expression(hat(beta)[2]))

> hist(B[,3], main=expression(paste("Histogram of ", beta[3])), xlab=expression(hat(beta)[3]))

> hist(S, main=expression(paste("Histogram of ", hat(sigma))), xlab=expression(hat(sigma)))

Figure 2: (a) Histogram of estimates for β1, (b) Histogram of estimates for β2, and (c) Histogram
of estimates for β3. Each histogram is based on 1000 simulations.

5. The mean of the estimates for σ2 is also quite accurate:

> mean(S)

[1] 0.9958682

We can also compare the histogram of the estimates for σ2 with the histogram of samples from the
population distribution of estimates for σ2:

> hist(S, main=expression(paste("Histogram of ", hat(sigma))), xlab=expression(hat(sigma)))

> chi2 <- rchisq(1000,7)

[1] 0.9982037

> hist(chi2/7, main="")
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Figure 3: (a) Histogram of estimates for σ2, (b) Histogram of samples from the population distri-
bution of the estimate for σ2 imates for β2. Each histogram is based on 1000 simulations.

We see that the two histograms have the same centers of mass but that the histogram of the
estimates for σ2 is slightly more spread out.

7. We suggest to re-run the code with errors following the uniform distribution U [−
√

3,
√

3]. (Check
for yourself that this distribution has indeed mean 0 and variance 1.)

> B <- matrix(NA, ncol=3, nrow=1000)

> S <- matrix(NA, ncol=1, nrow=1000)

> for (i in 1:1000) {

+ y <- X%*%beta0 + runif(10, -sqrt(3), sqrt(3))

+ B[i,] <- solve(t(X)%*%X)%*%t(X)%*%y

+ fitted <- y - X%*%B[i,]

+ S[i] <- sum(fitted^2)/(10-3)

+ }

>

> var(B[,1])

[1] 0.1296519

> var(B[,2])

[1] 0.04997595

> var(B[,3])

[1] 0.02816145

>

> hist(B[,1], main=expression(paste("Histogram of ", beta[1])), xlab=expression(hat(beta)[1]))

> hist(B[,2], main=expression(paste("Histogram of ", beta[2])), xlab=expression(hat(beta)[2]))

> hist(B[,3], main=expression(paste("Histogram of ", beta[3])), xlab=expression(hat(beta)[3]))

>

> hist(S, main=expression(paste("Histogram of ", hat(sigma))), xlab=expression(hat(sigma)))

> mean(S)
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[1] 1.02071

We observe that neither the variances of the estimates of β nor the mean of the estimates of σ2 are
much affected by the change in the distribution of the error term. However, from Figure 4 we see
that the variation of the estimates for β has increased (albeit only slightly). Notably, the histogram
of the estimates of σ2 looks now very different from the histogram based on the correct distribution
depicted in Figure 3 (b) (note the change in the spread!).

Figure 4: (a) Histogram of estimates for β1, (b) Histogram of estimates for β2, and (c) Histogram
of estimates for β3. Error distribution is the uniform distribution U [−

√
3,
√

3]. Each histogram is
based on 1000 simulations.

Figure 5: Residuals versus Fitted Values. Error distribution is the uniform distribution U [−
√

3,
√

3].
Histogram is based on 1000 simulations.
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