
Stat 500 - Homework 3 (Solutions)

Part A.
1. We fit a linear model with total sat score as response and takers, ratio, and salary as
predictors. The R-squared is 0.8239, i.e. the three predictors explain about 82.39% of the variation
in the response variable.

However, this information alone is not sufficient to decide whether the model is a good fit to
the data. Always visualize the data, residuals, and fitted values to check for nonlinear relationships
between response and predictors, and to see whether the assumptions necessary for hypothesis
testing are met. Here, we skip over those steps to keep the solution concise. (But if you did go
through those steps, you would see that all assumptions are met reasonably well!)

> library(faraway)

> data(sat)

> names(sat)

[1] "expend" "ratio" "salary" "takers" "verbal" "math" "total"

> fit <- lm(total ~ takers + ratio + salary, data=sat)

> summary(fit)

Call:

lm(formula = total ~ takers + ratio + salary, data = sat)

Residuals:

Min 1Q Median 3Q Max

-89.244 -21.485 -0.798 17.685 68.262

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1057.8982 44.3287 23.865 <2e-16 ***

takers -2.9134 0.2282 -12.764 <2e-16 ***

ratio -4.6394 2.1215 -2.187 0.0339 *

salary 2.5525 1.0045 2.541 0.0145 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 32.41 on 46 degrees of freedom

Multiple R-squared: 0.8239,Adjusted R-squared: 0.8124

F-statistic: 71.72 on 3 and 46 DF, p-value: < 2.2e-16

2. H0 : β3 ≤ 0 versus H1 : β3 > 0. The test statistic for this test is t = β̂3−0
ŝ.e.(β̂3)

∼ t46.
1 From the

R output we have that t = 2.541 and that the p-value for the two-sided test H0 : β3 = 0 versus
H1 : β3 6= 0 is P (|t46| > |2.541|) = 0.0145. Therefore, the p-value for our one-sided hypothesis test
is P (t46 > 2.541) = 0.0145/2 = 0.00725. Thus, at a significance level of α = 0.01 we reject the null
hypothesis that β3 is non-positive.

1Note that this is actually the test statistic associated with null hypothesis β3 = 0. However, if this test statistic
leads us to reject the null hypothesis β3 = 0, then we also reject that β3 = x for any x < 0. Why? Think about what
p-values mean!
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3. H0 : β2 = 0 versus H1 : β2 6= 0. The test statistic for this test is t = β̂2−0
ŝ.e.(β̂2)

∼ t46. From the R

output we have t = −2.187 and a p-value of P (|t46| > | − 2.187|) = 0.0339. Thus, at a significance
level of α = 0.01 we fail to reject the null hypothesis that β2 does not have an effect on the SAT
scores in the full model. What other test could you use to answer this question?
4. H0 : β1 = β2 = β3 = 0 versus H1 : “at least one regression coefficient is not 0”. This can also
be phrased as testing the reduced model (which does not contain any predictors) against the full
model (which includes all predictors). The test statistic for this test is

F =
(RSSreduced −RSSfull)/(49− 46)

RSSfull/46
∼ F3,46.

From the R output we have F = 71.72 with associated p-value equal to 2.2×10−16 ≈ 0. Hence, for
any significance level α > 0 we reject the null hypothesis that no predictor is relevant to explain
the SAT scores.
5. The CI’s are given below. Note that the 95% CI does not contain 0, whereas the 99% CI does
contain 0. Hence, we conclude that the p-value lies in the interval (0.01, 0.5).

> confint(fit, level=0.95)["salary",]

2.5 % 97.5 %

0.5304797 4.5744605

> confint(fit, level=0.99)["salary",]

0.5 % 99.5 %

-0.146684 5.251624

6. We use the code from lecture 3 to produce the joint confidence region for parameters associated
with ratio and salary:

library(ellipse)

# Plot the confidence region

plot(ellipse(fit, c(’ratio’, ’salary’)), type="l")

# Add the estimates to the plot

points(fit$coef[’ratio’], fit$coef[’salary’],pch=18)

# Add the origin to the plot

points(0, 0, pch=19, col="red")

# Add the confidence intervals

conf <- confint(fit, level=0.95)

abline(v=conf[’ratio’,], lty=2)

abline(h=conf[’salary’,], lty=2)

Note that the origin lies outside the 95% joint confidence region. Therefore, if we were to test
H0 : β2 = β3 = 0 versus Ha : “at least one of the two coefficients β2 and β3 is not zero”, we would
reject H0 at a 5% significance level.
7. We add expend to the linear model:

> fit2 <- lm(total ~ takers + ratio + salary + expend, data=sat)

> summary(fit2)

Call:

lm(formula = total ~ takers + ratio + salary + expend, data = sat)
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Figure 1: 95% Confidence Region for the parameters associated with ratio and salary.

Residuals:

Min 1Q Median 3Q Max

-90.531 -20.855 -1.746 15.979 66.571

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1045.9715 52.8698 19.784 < 2e-16 ***

takers -2.9045 0.2313 -12.559 2.61e-16 ***

ratio -3.6242 3.2154 -1.127 0.266

salary 1.6379 2.3872 0.686 0.496

expend 4.4626 10.5465 0.423 0.674

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 32.7 on 45 degrees of freedom

Multiple R-squared: 0.8246,Adjusted R-squared: 0.809

F-statistic: 52.88 on 4 and 45 DF, p-value: < 2.2e-16

The variables ratio, salary, and expend are all insignificant at any significance level. Furthermore,
the adjusted R-squared of fit2 is less than the adjusted R-squared of fit1. Hence, adding the
additional regressor does not improve the goodness of fit.
8. This is a test on nested models with the reduced model containing only predictor takers and
the alternative model being the full model with all four predictors takers, ratio, salary, and
expend. We use an F -test to decide which model is better:

> fit3 <- lm(total ~ takers, data=sat)

> anova(fit3, fit2)

Analysis of Variance Table

Model 1: total ~ takers
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Model 2: total ~ takers + ratio + salary + expend

Res.Df RSS Df Sum of Sq F Pr(>F)

1 48 58433

2 45 48124 3 10309 3.2133 0.03165 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

From the R output we see that at a 5% significance level we fail to reject that null hypothesis that
the reduced model containing only predictor takers is the better model.

Part B.
There are many ways to do this problem. Here is one possible solution. We first check the structure
of the relationship between the predictors and the response:

> data(teengamb)

> pairs(teengamb,col=as.numeric(teengamb$sex)+2)

Figure 2: Scatterplot of teengamb data set.

The scatterplot in Figure 2 shows that only variables sex and income are significantly correlated
with variable gamble. Furthermore, the relationship seems to be linear. We formally test this
observation with an F -test between a linear model containing sex, income, status, and verbal

as predictors and a reduced linear model containing only sex and income as predictors.

> # Candidate models

> fit1 <- lm(gamble ~ sex + status + income + verbal, data=teengamb)

> #summary(fit1)

> fit2 <- lm(gamble ~ sex + income, data=teengamb)

> #summary(fit2)

> anova(fit2, fit1)

Analysis of Variance Table
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Model 1: gamble ~ sex + income

Model 2: gamble ~ sex + status + income + verbal

Res.Df RSS Df Sum of Sq F Pr(>F)

1 44 22781

2 42 21624 2 1157.5 1.1242 0.3345

Indeed, at any reasonable significance level we fail to reject the null hypothesis that the reduced
model is the better model. Hence, from now on we work with the reduced model fit2.

Next, we check whether the errors are homoscedastic and approximately normally distributed.

> # Homoscedasticity

> plot(fit2$fitted, fit2$res)

> abline(h=0)

> # Normality of errors

> qqnorm(fit2$res, ylab="Residuals")

> qqline(fit2$res)

> hist(fit2$res, xlab="Residuals")

Figure 3: (a) Fitted values versus residuals, (b) QQ-Plot of residuals, and (c) Histogram of residuals.

Clearly, the magnitude of the residuals grows with the fitted values. Hence, the errors are not
homoscedastic. Moreover, the shape of the QQ-plot suggests that the errors have heavier lower and
upper tails than Gaussian random variables. The histogram is almost symmetric around zero, the
longer right tail might be due to an outlier (something that we will examine below). To stabilize
the variance we follow the hint and take the square root of the response.

> # Transformed Response

> fit3 <- lm(sqrt(gamble) ~ sex + income, data=teengamb)

> # Homoscedasticity

> plot(fit3$fitted, fit3$res)

> abline(h=0)

> # Normality of errors

> qqnorm(fit3$res, ylab="Residuals")

> qqline(fit3$res)

> hist(fit3$res, xlab="Residuals")
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Figure 4: (a) Fitted values versus residuals (transformed response), (b) QQ-Plot of residuals (trans-
formed response), and (c) Histogram of residuals (transformed response).

From Figure 4 we infer that taking the square root of the response yields stable, homoscedastic
variances that are approximately Gaussian. Therefore, we keep working with model fit3.

Finally, we check for outliers, large leverage, and influential points.

> # Compute studentized residuals

> fit3.s <- summary(fit3)

> sigma.s <- fit3.s$sig

> hat.s <- lm.influence(fit3)$hat

> stud.res <- fit3$residuals/(sigma.s * sqrt(1-hat.s))

> plot(stud.res, fit3$residuals, xlab="Studentized residuals", ylab="Raw residuals")

> # Half-normal plot for leverages

> halfnorm(lm.influence(fit3)$hat, nlab = 2, ylab="Leverages")

Figure 5: (a) Internally studentized residuals (transformed response), (b) half-normal plot (trans-
formed response).
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Figure 5(a) suggests that there are no outliers in the data set, Figure 5(b) suggests that there are
two observations with high leverage, observations 33 and 42. Those two points could be influential
points. We have re-run our analysis without those points; however, our findings did not change
significantly. Therefore, we do not report them here.

Part C.
Let (y1, x1), . . . , (yn, xn) be a sample of pairs of response variable y and predictors x = [A,B]′.
Write X = [x1, . . . , xn]′ for the n × 2-dimensional matrix with rows (!) x′1, . . . xn. By assumption
on A and B, and the law of large numbers

1

n
X ′X ≈

(
1 ρ
ρ 1

)
=: Σ,

where ρ is the correlation coefficient between A and B. Note that Σ has eigenvalues 1 +ρ and 1−ρ
with corresponding normalized eigenvectors e1 = 1√

2
(1, 1)′ and e2 = 1√

2
(1,−1)′. WLOG assume

that β̂ = (β̂A, β̂B)′ = 0. Then, the (1− α)-confidence region for the estimate β̂ = 0 is the set of all
β’s satisfying

1

2σ̂2
β′X ′Xβ ≤ cα (1)

for an appropriate value of cα > 0. Whence, the confidence region can be thought of as an
approximate level set of the quadratic form

Q(u) = u′Σu.

We know that the shape of level sets of quadratic forms is determined by their eigenvalues and
eigenvectors. In particular, for any w = (w1, w2) ∈ span(e1) and v = (v1, v2) ∈ span(e2) we have

Q(w) = w′Σw = 2(1 + ρ)w2
1,

Q(v) = v′Σv = 2(1− ρ)v22.

Now, observe that w ∈ span(e1) and v ∈ span(e2) lie on the boundary of the level set corre-

sponding to cα if and only if |w1| = |w2| =
√

cα
2(1+ρ) and |v1| = |v2| =

√
cα

2(1−ρ) . Therefore, if ρ > 0,

then |w1| < |v1|. Thus, the ellipse defined by 1 is compressed in the direction of eigenvector e1 and
stretched out in direction of eigenvector e2. This results in the “leaning to the left” effect. See
Figure 6.

Similarly, we can conclude that if ρ < 0, the ellipse is stretched out in direction of e1 but
compressed in direction e2. This yields the “leaning to the right” effect. Finally, if ρ = 0 then the
ellipse is a circle with radius

√
cα
2 ; there is no stretching or compressing in any direction.
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Figure 6: Level set of the quadratic form Q(u) = u′Σu for some cα > 0 and ρ > 0.
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