
Stock Trading with Reinforcement Learning

Team Members (Group 23):
Israel Diego, (israeldi@umich.edu)

Huiyang Ding (huiyangd@umich.edu),
Shuhan Wei (wshuhan@umich.edu),

Zhouyuan Zhang(hunterzz@umich.edu)

March 2020

Abstract

In this paper, we use Q-learning, which is a reinforce learning algorithm to make trading
decisions on the U.S stock market. We find a Q-function that is profitable on training and
testing data. Moreover, our model traded sensibly during the corona virus market meltdown.
Our work is a starting point for more sophisticated implementations of Q-learning algorithms.

1 Introduction

Machine learning has grown in popularity for predicting the stock market [1][4][5] . One interesting
branch of machine learning is reinforcement learning, which attempts to learn optimal decision-
making to achieve maximum reward in a complex dynamic environment. In this project, we
leverage the application of reinforcement learning to trade in the U.S stock market. Specifically,
we use Q-learning which chooses the optimal action at each time step, given the current state and
environment. The Q represents quality, which means the usefulness of a given action/decision from
gaining reward. We will train our algorithm to choose from a set of actions and execute buy/sell
trades when the model decides it is optimal to do so. We will also train the model to make a
decision on the size of a trade at each specific time. Q-learning finds a policy that maximizes the
expected value of the total reward over any and all successive steps, starting from the current state.
More specifically our algorithm will aim to maximize the following utility function (Equation 1):

E [U (wT)] = E [wT]− 1

2
κV [wT] ≈

T∑
t=1

Rt (1)

where wT is an investor’s wealth at some future time T , κ is a constant that depends on the
initial wealth w0 and Rt is the reward at time time t < T . Maximizing the utility function above
is equivalent to maximizing the mean-variance of an investor’s wealth at some future date T and
this is approximately equal to maximizing cumulative reward over time [1].

1

2 Data

The data is obtained from Yahoo Finance1. We will focus on the pool of stocks from S&P 500 and
use daily adjusted closing price data from January-01-2015 to April-13-2020 in order to calculate re-
turns. Particularly we will focus on stocks from various industries, such as Alphabet Inc.(GOOG),
Apple(AAPL), Nvidia(NVDA), Markel Corporation(MKL) and General Motors Company(GM).
In Figure 1, we notice that Google stock performance was increasing overall, but experienced large
losses during the corona virus outbreak.

Figure 1: Google Stock Time Series from July 2015 to Jan 2020. Green is for increasing and red
is for decreasing.

We also perform some exploratory data analyses over all the 5 target stocks. The key finding is
that we need to train our model on daily returns rather than prices. The daily return is calculated
as,

Rt =
St

St−1

− 1 (2)

where t denotes tth day in a market, St is the adjusted close price, and Rt is the return.
Returns are preferable over stock prices, because are typically weakly stationary property.

Figure 2 shows that stock prices tend to have different scales and frequencies of prices. On the other
hand, stock returns for all stocks are centered around zero and are more comparable across the
five stocks. From the bottom-right subplot from Figure 2 that returns have low auto correlations,
whereas prices are highly correlated. Working with returns, also allows us to generalize our trading
model to trade any stock, not just the stock we trained our model on.

1https://finance.yahoo.com/

2

Figure 2: Plots for Stocks of Interests on Their Original Prices and Returns

3 Experiment

3.1 Environment Settings

We will train our model purely on Google (GOOG) stock data during 2015-01 to 2018-11, and test
on the remaining data, which is approximately 70/30 train and test split. To check the robustness
of our model, we trade the other stocks using the Q-function we learned from trading Google
stock. We will assume a $1 million portfolio for our trading experiment. We give our model six
possible actions,

3

1. Hold position

2. Buy 5% of portfolio

3. Buy 10% of portfolio

4. Sell 5% of portfolio

5. Sell 10% of portfolio

6. Sell 20% of portfolio

We purchase and sell as percentages of our portfolio, so that the share price of a particular
stock does not affect the decision our model has to make. For example, our model simply chooses
to buy $50,000 worth or sell $100,000 worth of our portfolio, and determines the number of shares
necessary to meet this value. In order to encourage high profit-taking but discourage large losses,
we came up with the following reward function,

Reward t =

3 ifrt > 30%
2 if10% < rt ≤ 30%
1 if0% < rt ≤ 10%
−1 if − 10% ≤ rt < 0%
−2 if − 30% ≤ rt < 10%
−3 ifrt < −30%

where rt denotes the return rate.

3.2 Parameter Selection

To initialize our model, we focus on two tuning parameters: hidden size and epoch number. For
the two parameters, we set up each a candidate pool with four values, given as follow,

1. hidden size = 10, 50, 100

2. epoch = 5, 70, 120

Hidden size assigns the size of linear layers of each layer of the Q-network, and epoch indicates
the number of iterations. An increase in either of the two parameters results in higher model
complexity. We trained the model and see to testing results for the best combination that gives
best result while eliminates overfitting issues. The result is as follow,

4

Test Period Profits ($) Train Period Profits ($)
Hidden Size/Epoch 5 70 120 5 70 120

10 57,489.79 242,759.2 243,789.9 112,006.2 651,586.7 471,679.9
50 328,939.1 154,586.7 223,046.1 852,119.3 387,565.8 415,642.7
100 248,775.1 254,428.7 353,789.7 810,394.3 424,773.9 696,878.3

The three highest profits are generated by the (Epoch, Hidden size) combinations (120, 100),
(5, 50), and (70, 100). We choose the third combination in our following analysis in order to strike
a balance between overfitting and underfitting.

3.3 Model Structure

Our Q-network is a three-layer neural network. Each layer applies a linear transformation which
is 100 hidden layers deep, and the hidden activation functions are Relu. The output layer is a
vector with size equal to the number of possible actions. We used memory size of 200 to make
record of 200 actions and its corresponding observations. We also used batch size of 50, discount
factor (to balance immediate and future reward) of 97% with learning rate of 0.001 to train on 70
epochs.

4 Results

In the results that follow, it will become apparent to the reader that our model is quite effective
at trading, and almost every trade decision it makes will result in profit. However, our goal is not
only to build and train a model that trades well, but we also aim to understand the trading logic
that our model learned. We decided to color-code our plots in order to illustrate the decisions
that our model made during the process. For each of the stocks that we traded using our model,
we show four subplots. The first is simply the price series, the second shows the number of shares
bought and sold over time, the portfolio plot shows the value of our portfolio which consists of
cash plus number of shares, and the final profits plot shows the gains and losses from trading
activity.

4.1 Google Training

First, we discuss the results from our model training on Google stock. From Figure 3 we notice
that our Q-learning algorithm has learned an effective policy that buys google stock when the price
is relatively low and sell stock when the price is high which is a basic fundamental to trading. In
addition, our reward system is effective since our algorithm has learned to sell a larger amount
of shares in order to generate more profit. On the training set, every buy/sell trade that our
algorithm made resulted in profit.

5

Figure 3: Google(GOOG) Training and Stock Prices

4.2 Google Testing Performances

Figure 4 shows that the Q-learning algorithm performed well on Google’s testing set. The upper-
right plot of Figure 4 shows that typically when the stock price is decreasing, our algorithm buys
shares (From end of 2018 to March, 2019). Also, we see that selling of shares occurs before, during,
and after the stock price reaches a local peak. After each selling period, the portfolio typically
has sold all of its shares.

6

Figure 4: Google(GOOG) Test Performances and Stock Price

4.3 Testing Other Stocks

Next we test the performance of our model on the other stocks mentioned in the introduction.
Figure 5 shows the performance of our model on trading Apple stock. We see that our model
generated excellent profits from trading Apple stock, with more trade-sell phases compared to
our model performance on the Google testing set. During the testing period which spans roughly
two years, it gained 500,000 dollars in total profits. Figure 7 shows the annual returns from our
trading, and we see that our model achieved 54% annual return over the test period on Apple
stock. For trading results of the remaining stocks, please see the Appendix.

7

Figure 5: Apple(AAPL) Testing Performances and Stock Price

From Figure 6 we see that our algorithm was also able to trade the other stocks effectively,
where the algorithm had the best trading performance for Apple and Nvidia. While the market
suffered losses due to the corona virus, our algorithm outperformed the market and still had
positive returns after the corona virus period in mid-February through mid-March. Figure 7
shows the returns from our trading process and also the Sharpe ratio, where we used the 10-year
treasury bond as our risk-free asset. The Sharpe measures the average return earned in excess of
the risk-free rate per unit of volatility. It is defined as,

SharpeRatio =
Rp −Rf

σp
(3)

where Rp denotes the return of portfolio, Rf denotes the risk-free rate, and σp denotes the standard
deviation of portfolio’s excess return. Generally, sharpe ratios above two are considered good
trading strategies.

We illustrate trading performance of all stocks over the training period and the testing period.
These results correspond to data that our model has not seen before since we only trained on
Google stock during the training period. Note that our model did not trade the S&P 500 index,
but we include it in the table to use as a benchmark for performance (the Brown Line). We see
that during the testing period, annual returns are above 22% for all stocks that were traded by
our model, and the Sharpe ratios are also high from Figure 7. Our model was able to outperform
the market benchmark performance in both the training period and the testing period.

8

Figure 6: All Stock Performance on Their Net Worth from Model’s Trading Results

Figure 7: Result Table for the Stocks Tested.Note that SP 500 is the benchmark for comparison.

9

5 Conclusion and Discussion

5.1 Conclusion

We find that reinforcement learning can be an effective tool for developing trading strategies to
make profiting trade decisions. By training our model on a small numbers of stocks’ returns(like
we showed in the experiment by only using Google stock returns), we were able to extend our
model to trade in virtually any stock from a diverse industries. This illustrates that our model
was able to learn a sensible buy low/sell high trading logic, without overfitting to training data.

5.2 Discussion

We consider other extensions and improvements we can make to the model that were not imple-
mented in our report. So far we have only implemented a basic version of a Q-learning algorithm
from Q-learning families. There are more advanced algorithm designs from Q-leaning families and
from general Reinforcement learning families we could learn from to improve our model. For ex-
ample, double Q-learning proposed by Hado Hasselt [2] is a possible next step to try out, because
double Q-learning adopts a more complex value function to train in a mutually symmetric way,
which may capture more information from the training data.

In addition, there is room to improve the deep learning structure within the Q-learning frame-
work. By building upon our current model structure, we could expect better performance by
experimenting with more sophisticated deep learning structures and fine-tuning techniques. For
example, a discriminate fine-tuning process with unfreezing module for adjusting learning rate
could be generalized in our structure for tuning the discount rate, which is one of the key param-
eter in our Q-learning structure. The idea is from Jeremy Howard and Sebastian Ruder [3].

Lastly, on the financial side, there are portfolio optimization techniques that can be incorpo-
rated into our model, such as periodically re-balancing our portfolio in order to achieve maximum
possible Sharpe ratio.

References

[1] Nicole Bäuerle and Ulrich Rieder. Markov decision processes with applications to finance.
Springer Science & Business Media, 2011.

[2] Hado V Hasselt. “Double Q-learning”. In: Advances in neural information processing systems.
2010, pp. 2613–2621.

[3] Jeremy Howard and Sebastian Ruder. “Universal language model fine-tuning for text classi-
fication”. In: arXiv preprint arXiv:1801.06146 (2018).

[4] Raymond Rishel. “Optimal portfolio management with partial observations and power util-
ity function”. In: Stochastic analysis, control, optimization and applications. Springer, 1999,
pp. 605–619.

[5] Hado Van Hasselt. “Reinforcement learning in continuous state and action spaces”. In: Rein-
forcement learning. Springer, 2012, pp. 207–251.

10

6 Appendix

6.1 Other Stocks’ Results

Figure 8: GM

11

Figure 9: MKL

Figure 10: NVDA

12

6.2 Changing Discount Factors

We also changed the discount factor to 0.5 and 0.1 to see the difference in resulting testing and
training profits. While discount factor 0.5 shows robustness in optimal combination selection,
decreasing the factor to 0.1 gives completely different results.

Test Period Profits Train Period Profits
Hidden Size\Epoch 5 70 120 5 70 120

10 97550.3 265044.5 215135.3 574846 725895.9 682465.7
50 338305.7 244030 207883.7 952642.1 665029.6 558940.3
100 249874.3 274474 242955.3 988432.3 734970.6 788963

Table 1: Discount factor = 0.5

Test Period Profits Train Period Profits
Hidden Size\Epoch 5 70 120 5 70 120

10 343157.9 189856.7 136558.6 921601.4 812006.5 730646.7
50 229440.6 147386.3 159337.4 629853.4 368414.5 511313.6
100 141027.1 154131.5 289756.2 541711.3 518510.2 826954.2

Table 2: Discount factor = 0.1

13

