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1 Introduction

The purpose of our project is to predict daily average stock returns while accounting for
the recent COVID-19 outbreak. Our goal is to achieve reasonable prediction accuracy given
recent data. The data is daily closing stock prices from Apple and Microsoft from 2010 to
present. This results in a total of 2,592 observations for each stock. We compute the return
on an equally-weighted portfolio consisting of the two stocks. All our developed Bayesian
time-series models are based on this portfolio return time-series. Figure 1, below, gives a
depiction of the three time-series. While the three-time series appear similar they are on
three different scales (e.g. observe their y-axis values). The portfolio return has a smaller
scale, because of the averaging between two relatively riskier stocks. This indicates that
the portfolio return is less risky and serves as an illustration on the benefits of portfolio
diversification.
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Figure 1: Time Series plot of Apple, Microsoft, and average closing adjusted returns from
Jan 1, 2010 to present
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2 Methodology

Several models worth considering when fitting the average adjusted returns of Apple and
Microsoft: AR(p), ARMA(p, q), and ARMA(pa, qa) − GARCH(pg, pg). Additionally, we
conduct posterior predictive checks and comparisons between models in order to find the best
fitting model to the observed data.

2.1 Autoregressive(AR) Model

For stationary time series process {X}Nn=1, the AR(pa) model can be expressed by:
φ(B) = 1− φB − φ2B

2 − · · · − φpaB
pa

The εn is generally the IID Gaussian noise, which means ε ∼ i.i.d. N(0, σ2). Similarly, the
t-distribution type of white noise is also checked in our report since the heavy-tailed nature
of financial return data, which means ε ∼ i.i.d. TDist(ν, 0, σ2) and degree of freedom serves
to control the extent of the heavy tail.

2.2 Autoregressive Moving-Average (ARMA) Model

In addition to the AR Model, the error terms can also be correlated and should be modeled
in practice. The ARMA(pa, qa) model can be expressed by:

φ(B)Xn = Ψ(B)εn.

Where
ψ(B) = 1− ψ(B)− ψ2(B2)− · · · − φpaB

pa

Ψ = 1 + Ψ1B + Ψ2B
2 + · · ·+ ΨqaB

qa

The error term is generally the IID Gaussian noise εn ∼ i.i.d. N(0, σ2).

2.3 Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) Model

To address the self-exciting and local volatility dependence nature of financial data, the
GARCH model is necessary. The GARCH(pg, qg) model can be expressed by:

Xn = εn
√
Vn.

Where
Vn = α0 +

pg∑
i=1

αiX
2
n−i +

qg∑
j=1

βjX
2
n−j

Notice the εn still covers IID Gaussian noise εn ∼ N(0, σ2) and IID t-distribution noise
δn ∼ i.i.d. TDIST (ν, 0, σ2), the self-exciting nature is modeled by the terms in Vn.
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2.4 Autoregressive Moving-Average with Generalized Autoregres-
sive Conditional Heteroskedasticity Error(ARMA-GARCH)
Model

A more general model is the ARMA model with GARCH error, which captures both the
ARMA type trend and local volatility dependence. The ARMA(pa, qa) + GARCH(pg, qg)
model can be expressed by:

φ(B)Xn = ψ(B)εn.

Where
φ(B) = 1− φ1B − φ2B

2 − · · · − φpaB
pa

ψ(B) = 1 + ψ1B + φ2B
2 + · · ·+ ψqaB

qa ,

and
εn = σnδn.

Where
σ2
n = α0 +

pg∑
i=1

αiε
2
n−i +

qg∑
j=1

βjσ
2
n−j

The δn is the IID white noise this time. And this report will both cover the Gaussian
noise δn ∼ i.i.d. N(0, 2) and t-distribution white noise δn ∼ i.i.d. TDIST (ν, 0, σ2) for our
ARMA-GARCH model.

3 Posterior Predictive Checks

Sufficient methods and criteria are implemented in posterior predictive checks to ensure the
results and prediction of the model we selected is more reliable and accurate than any other
models we compared.

3.1 Log-Likelihood (LLH)

The LLH is given by
LLH = log p(y|θ̂MLE)

3.2 Akaike Information Criterion (AIC)

The AIC is given by
AIC = −2 log p(y|θ̂MLE) + 2k,
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where k is the number of parameters estimated in the model. In addition we generate density
plots of posterior prediction simulations and compare them to the distribution of the observed
data.

4 Results

In order to illustrate the performance of each model, we will build our models sequentially.
We will start with the GARCH(1,1) and compare it to ARMA(1,1)+GARCH(1,1). We will
also compare model coefficients and their posterior intervals with results from fitting the
models using built-in R functions such as arima() and the fGarch package. We impose
N(0, 2) weakly informative prior on the model coefficients and cauchy(0, 5) on the standard
deviation parameters.

4.1 GARCH model

4.1.1 Estimated Coefficients and 95% Credible Intervals

From the trace plots of the coefficients in GARCH(1,1) with Gaussian noise, we can see the
coefficients of our GARCH model are convergent after reasonable iterations. Next we look
at potential scale reduction R̂, which is defined by R̂ =

√
ˆvar+(ψ|y)
W

, where ˆvar+(ψ|y) is the
marginal posterior variance of the estimand and W = 1

m

∑m
j=1 s

2
j . We can see that the R̂s of

the model coefficients are close to 1, which means the potential scale reduction will be low
if we proceed with further simulations. Thus, the simulations we have done are enough for
inference about the target distribution. The ESSs are also high and agree with our analysis.

Table 1: GARCH(1,1) Stan Fitted Model

mean se_mean sd 2.5% 97.5% n_eff Rhat
mu 0.0013 0.0000 0.0003 0.0008 0.0018 4629.606 0.9999
alpha0 0.0000 0.0000 0.0000 0.0000 0.0000 1231.529 1.0011
alpha1 0.1148 0.0003 0.0145 0.0889 0.1454 1790.141 1.0015
beta1 0.8529 0.0005 0.0181 0.8156 0.8845 1395.631 1.0019
lp__ 9680.8617 0.0477 1.6812 9676.7635 9683.1020 1243.040 0.9999
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Figure 2: GARCH(1,1) Trace plot

For the GARCH(1,1) we have four parameters to estimate. We notice that the pareto k value,
p_loo, is about 8.3, which is higher than the the number of parameters we are estimating,
and indicates our model is likely to be misspecified.

Table 2: Likelihood of GARCH(1,1) model

Estimate SE
elpd_loo 7316.483140 51.2094398673147
p_loo 8.301691 1.07348661926317
looic -14632.966280 102.418879734629
AIC -14624.966280

4.1.2 Maximum Likelihood Estimation Comparison (i.e. garchFit function in
R)

Comparing our model results to the maximum likelihood approach, we see that the estimates
of the coefficients and standard errors are close to our posterior sampling approach. The log
likelihood is a bit higher for MLE approach.

## Estimate Std. Error t value Pr(>|t|)
## mu 1.307548e-03 2.516526e-04 5.195846 2.037904e-07
## omega 7.730011e-06 1.659113e-06 4.659123 3.175596e-06
## alpha1 1.096479e-01 1.377493e-02 7.959960 1.776357e-15
## beta1 8.608806e-01 1.722240e-02 49.986088 0.000000e+00
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## LogLikelihood
## 7323.437

4.1.3 Posterior Predictive Checks

Below we show a density overlay plot comparing our posterior samples to the observed
distribution. We see that the observed distribution has a higher peak than our posterior
samples. This indicates we may want to modify our model to achieve a better fit.
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Figure 3: GARCH(1,1) Kernal Density of Data compared to replicates.

4.2 ARMA + GARCH model

We incorporate a time-varying mean component to our model by combining ARMA and
GARCH models in order to see whether the fit of the model would improve.

4.2.1 Estimated Coefficients and 95% Credible Intervals

Similarly, for convergence analysis of our ARMA(1,1)-GARCH(1,1) with Gaussian white
noise, we can see the trace plots are generally good. However, the variability of β1 and θ are
undesirable and worth reconsidering. By checking R̂s, we find they are close to 1, including
for β1 and θ, which suggests that all coefficients converge based on our current simulation
iterations. The ESSs are also above 1000 except for β1 and θ. In summary, most of coefficients
converge after reasonable iterations, but there are still some problems with the convergence
of β1 and θ.
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Table 3: ARMA(1,1)+GARCH(1,1) Stan Fitted Model

mean se_mean sd 2.5% 97.5% n_eff Rhat
alpha 0.0016 0.0000 0.0006 0.0005 0.0028 1261.7069 1.0045
beta[1] -0.2353 0.0125 0.3808 -0.8116 0.5493 925.2211 1.0039
theta 0.2118 0.0124 0.3801 -0.5738 0.7952 934.6029 1.0039
sigma1 0.0223 0.0002 0.0102 0.0070 0.0462 2215.6235 1.0009
alpha0 0.0000 0.0000 0.0000 0.0000 0.0000 1497.0497 1.0008
alpha1 0.1147 0.0003 0.0143 0.0883 0.1446 1915.1857 1.0030
beta1 0.8533 0.0004 0.0180 0.8163 0.8867 1615.9727 1.0015
lp__ 9681.0590 0.0526 1.8024 9676.7039 9683.5578 1174.4846 1.0012
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Figure 4: ARMA(1,1)+GARCH(1,1) Trace plot

In the table below, we see that the log-likelihood is 7316, which is the same as the GARCH
model. According to the AIC, we would favor the GARCH model since it is a simpler model
and has lower AIC than the ARMA+GARCH model.

Table 4: Likelihood of ARMA(1,1)+GARCH(1,1) model

Estimate SE
elpd_loo 7316.435411 51.1909903746143
p_loo 9.259267 1.04557166195069
looic -14632.870821 102.381980749229
AIC -14620.870821
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4.2.2 Maximum Likelihood Estimation Comparison (i.e. garchFit function in
R)

The MLE approach also shows that there is no improvement in the fit by including ARMA
component in our model since the log-likelihood barely increased.

## Estimate Std. Error t value Pr(>|t|)
## mu 2.129127e-03 4.924866e-04 4.323217 1.537704e-05
## ar1 -6.231172e-01 2.133781e-01 -2.920249 3.497514e-03
## ma1 5.977725e-01 2.186384e-01 2.734069 6.255688e-03
## omega 7.695875e-06 1.655144e-06 4.649672 3.324638e-06
## alpha1 1.097999e-01 1.380345e-02 7.954528 1.776357e-15
## beta1 8.609031e-01 1.723225e-02 49.958837 0.000000e+00

## LogLikelihood
## 7324.667

4.2.3 Posterior Predictive Checks

The density overlay plot shows that the posterior samples from the ARMA+GARCH model
still fall short of the peak of the true distribution.
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Figure 5: ARMA(1,1)+GARCH(1,1) Kernal Density of Data compared to replicates.
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4.3 GARCH model (t-error)

Another approach to improving the GARCH model is to assume a different error distribution.
Below we show a QQ plot of the standardized residuals of the GARCH model. We see that
the residuals are heavier-tailed than the standard normal. Instead we will fit GARCH model
with t-distributed error, where the degrees of freedom for the t-distribution are computed
from the kurtosis of the data.
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Figure 6: GARCH(1,1) QQ plot of standardized residuals.

4.3.1 Estimated Coefficients and 95% Credible Intervals

For GARCH(1,1) with t-distributed noise, the trace plots shows all coefficients are fine with
respect to convergence. Similarly, all R̂s are close to 1 and ESSs are high enough for us to
draw inference about the target distributions. To summarize, the coefficients converge well
under our GARCH(1,1) with t distribution noise model.

Table 5: GARCH(1,1) (t-distributed) Stan Fitted Model

mean se_mean sd 2.5% 97.5% n_eff Rhat
mu 0.0013 0.0000 0.0002 0.0009 0.0018 4591.058 1.0002
alpha0 0.0000 0.0000 0.0000 0.0000 0.0000 1156.569 1.0008
alpha1 0.0691 0.0003 0.0109 0.0501 0.0927 1407.963 0.9991
beta1 0.8677 0.0006 0.0206 0.8240 0.9039 1054.996 0.9998
lp__ 9867.3885 0.0454 1.6226 9863.3925 9869.5318 1277.943 1.0030
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Figure 7: GARCH(1,1) (t-distributed) Trace plot

This model fits the data the best. It has an improved log likelihood of 7371, while the built-in
R-estimated model has a slightly higher log-likelihood of 7380.

Table 6: Likelihood of GARCH(1,1) (t-distributed) model

Estimate SE
elpd_loo 7371.570745 47.444111229031
p_loo 5.279545 0.451724032473223
looic -14743.141490 94.888222458062
AIC -14733.141490

4.3.2 Maximum Likelihood Estimation Comparison (i.e. garchFit function in
R)

## Estimate Std. Error t value Pr(>|t|)
## mu 1.331712e-03 2.376761e-04 5.603055 2.106066e-08
## omega 6.075587e-06 1.746677e-06 3.478369 5.044755e-04
## alpha1 1.040105e-01 1.619819e-02 6.421122 1.352731e-10
## beta1 8.755647e-01 1.909087e-02 45.863009 0.000000e+00
## shape 6.301325e+00 7.694065e-01 8.189851 2.220446e-16

## LogLikelihood
## 7379.603
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4.3.3 Posterior Predictive Checks

The density overlay plot below shows that the GARCH(1,1) model with t-distributed errors
fits the observed data better than the GARCH(1,1) model with gaussian distributed errors.
This largely occurs because stock profolio returns are heavy-tailed.
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Figure 8: GARCH(1,1) (t-distributed) Kernal Density of Data compared to replicates.

5 Conclusion

We have surveyed several methods for stock return predictions. The GARCH model with
t-distributed errors performed best. This implies our portfolio returns have time-varying
variance, but not a time-varying mean; if the latter was true the ARIMA(1,1)-GARCH(1,1)
model would have performed better. Additionally, we also have indirectly shown some of
the limitations of fitting timeseries models in R using maximum likelihood. While, these
models perform well when their assumptions are not violated, they are not flexible enough to
incorporate additional information. For example, informative priors on parameters or, as we
have shown, substituting gaussian distributed errors for t-distributed errors when model fit
can be improved.
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